On the inequalities defining the entanglement space of 2 -qubits

V.P.Gerdt ${ }^{a}$, A.M.Khvedelidze ${ }^{a, b, c}$ and Yu.G.Palii ${ }^{a}$
${ }^{a}$ Joint Institute for Nuclear Research, Dubna, Russia
${ }^{b}$ A Razmadze Mathematical Institute, Tbilisi, Georgia
${ }^{c}$ University of Georgia, Tbilisi, Georgia

Abstract

The issue of description of the entanglement space \mathcal{E}_{2}, i.e., the orbit space \mathfrak{P}_{+} / G, where \mathfrak{P}_{+}- the space of mixed states of pair of qubits, $\mathrm{G}=\mathrm{U}(2) \otimes \mathrm{U}(2)$ - the group of so-called local unitary transformations, is discussed. Within the geometrical invariant theory, using the integrity basis for the ring of G-invariant polynomials, the derivation of equations and inequalities that determine the entanglement space \mathcal{E}_{2} are outlined.

-Quantum non-localities and orbit space - A motivation to study the orbits space \mathfrak{P}_{+} / G for d-dimensional r-partite quantum system is as follows. A state $\varrho \in \mathfrak{P}_{+}$, characterizing a composite quantum system is an element of the tensor product of Hilbert-Schmidt spaces of operators corresponding to each r individual subsystem. In accordance with a fixed factorization $d=n_{1} \times n_{2} \times \cdots \times n_{r}$, the Local Unitary (LU) group, $\mathrm{G}=\mathrm{U}\left(n_{1}\right) \otimes \cdots \otimes \mathrm{U}\left(n_{r}\right)$ acts on \mathfrak{P}_{+}in non-transitive way. This circumstance causes a stratification of \mathfrak{P}_{+}, reflecting a diversity of non-local properties the system exposes. Classes of the equivalence with respect to the LU transformations form the so-called entanglement space, the factor space:

$$
\mathcal{E}=\frac{\text { Space of states }}{\text { Group of LU transformations }} .
$$

Thus characterization and classification of a quantum system non-locality reduces mainly to a classical mathematical problem - description of the orbit space of compact Lie groups.
-Recipe for the orbit space description - The orbit space of a compact Lie group action on a linear space can be described in the framework of the invariant theory within the direction initiated by Processi and Schwarz [1, 2].

Consider the compact Lie group G acting linearly on the real d-dimensional vector space V and let $\mathbb{R}[V]^{\mathrm{G}}$ is the corresponding ring of the G-invariant polynomials on V. Assume $\mathcal{P}=\left(p_{1}, p_{2}, \ldots, p_{q}\right)$ is a set of homogeneous polynomials that form the integrity basis, $\mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{d}\right]^{\mathrm{G}}=\mathbb{R}\left[p_{1}, p_{2}, \ldots, p_{q}\right]$. Elements of the integrity basis define the polynomial mapping:

$$
p: \quad V \rightarrow \mathbb{R}^{q} ; \quad\left(x_{1}, x_{2}, \ldots, x_{d}\right) \rightarrow\left(p_{1}, p_{2}, \ldots, p_{q}\right)
$$

Since p is constant on the orbits of G it induces a homeomorphism of the orbit space V / G and the image X of p-mapping; $V / G \simeq X$ [3]. In order to describe X in terms of \mathcal{P} uniquely, it is necessary to take into account the syzygy ideal of \mathcal{P}, i.e.,

$$
I_{\mathcal{P}}=\left\{h \in \mathbb{R}\left[y_{1}, y_{2}, \ldots, y_{q}\right]: h\left(p_{1}, p_{2}, \ldots, p_{q}\right)=0, \text { in } \mathbb{R}[V]\right\}
$$

Let $Z \subseteq \mathbb{R}^{q}$ denote the locus of common zeros of all elements of $I_{\mathcal{P}}$, then Z is algebraic subset of \mathbb{R}^{q} such that $X \subseteq Z$. Denoting by $\mathbb{R}[Z]$ the restriction of $\mathbb{R}\left[y_{1}, y_{2}, \ldots, y_{q}\right]$ to Z one can easily verify that $\mathbb{R}[Z]$ is isomorphic to the quotient $\mathbb{R}\left[y_{1}, y_{2}, \ldots, y_{q}\right] / I_{\mathcal{P}}$ and thus $\mathbb{R}[Z] \simeq \mathbb{R}[V]^{\mathrm{G}}$. Therefore the subset Z essentially is determined by $\mathbb{R}[V]^{\mathrm{G}}$, but to describe X the further steps are required. According to $[1,2]$ the necessary information on X is encoded in the structure of $q \times q$ matrix with elements given by the inner products of gradients, $\operatorname{grad}\left(p_{i}\right)$:

$$
\|\operatorname{Grad}\|_{i j}=\left(\operatorname{grad}\left(p_{i}\right), \operatorname{grad}\left(p_{j}\right)\right) .
$$

Summarizing these observations, the orbit space is identified with the semi-algebraic variety, defined as points, satisfying two conditions:
a) $z \in Z$, where Z is the surface defined by the syzygy ideal for the integrity basis of $\mathbb{R}[V]^{\mathrm{G}}$;
b) $\operatorname{Grad}(z) \geqslant 0$.

- Describing the entanglement space $\mathcal{E}_{2} \bullet$ The general scheme sketched above has been applied to the analyzes of a 4 -dimensional bipartite quantum system with partition, $n_{1}=n_{2}=2$, i.e., a pair of qubits.

To make Procesi-Schwarz method applicable we linearize at first the adjoint action of $\mathrm{U}(2) \otimes \mathrm{U}(2)$ group on the space $\mathcal{H}_{4 \times 4}$ of 4×4 Hermitian matrices:

$$
\begin{equation*}
(\operatorname{Ad} g) \varrho=g \varrho g^{-1}, \quad g \in \mathrm{U}(2) \otimes \mathrm{U}(2), \tag{1}
\end{equation*}
$$

by the mapping $\mathcal{H}_{4 \times 4} \rightarrow \mathbb{R}^{16} ; \varrho \rightarrow \boldsymbol{v}=\left(v_{1}, v_{2}, \ldots, v_{16}\right)$ and considering on \mathbb{R}^{16} the linear representation

$$
\boldsymbol{v}^{\prime}=L \boldsymbol{v}, \quad L \in \mathrm{U}(2) \otimes \mathrm{U}(2) \otimes \overline{\mathrm{U}(2) \otimes \mathrm{U}(2)},
$$

where a line over expression means the complex conjugation. Further using the integrity basis for $\mathbb{R}[\boldsymbol{v}]^{\mathrm{U}(2) \otimes \mathrm{U}(2)}$, suggested in [4]-[7] one can pass to the analysis of the semi-positivity of the Grad- matrix and determine the set of inequalities defining the orbit space $\mathbb{R}^{16} / \mathrm{U}(2) \otimes \mathrm{U}(2)$. However, this is not the end of a story. The orbit space defined in this manner is not the space of entanglement, namely $\mathcal{E}_{2} \subseteq \mathbb{R}^{16} / \mathrm{U}(2) \otimes \mathrm{U}(2)$. Indeed, due to the non-negativity of density matrices the space of physical states is $\mathfrak{P}_{+} \subset \mathbb{R}^{15}$ defining by a further set of constraints on elements of integrity basis (see e.g. [7]). Concluding it is worth to stress that analysis of the relevant geometry of \mathcal{E}_{2}, determining via a complete set of polynomial inequalities in LU invariants, including both, mentioned here, as well as arising from the semi-positivity conditions on the density matrix of 2 -qubits, represents a non-trivial mathematical problem and has highly important consequences for quantum information theory and quantum computing.

- Computational issues - To derive the inequalities in the LU invariants determining the orbit space $\mathbb{R}^{16} / \mathrm{U}(2) \otimes \mathrm{U}(2)$, one has first to express the entries of Grad-matrix in terms of the invariants and then compute its Smith normal form. For the last computation we are going to try recent algorithms [8] and their implementation in Maple. Unlike all previously known algorithms for reduction of a matrix to the Smith normal form, the algorithms of paper [8] may work when the entries of a matrix are multivariate polynomials. The ring of such polynomials is not Euclidean (i.e., not principal ideal) domain that is at the basis of all other algorithms.

References

[1] C. Procesi and G. Schwarz, The geometry of orbit spaces and gauge symmetry breaking in supersymmetric gauge theories, Phys. Lett. B 161, 117-121 (1985).
[2] C. Procesi and G. Schwarz, Inequalities defining orbit spaces, Invent.math. 81 539-554 (1985).
[3] D. Cox, J, Little and D. O'Shea, Ideals, Varieties, and Algorithms, Third Edition, Springer, (2007).
[4] C. Quesne, $\mathrm{SU}(2) \otimes \mathrm{SU}(2)$ scalars in the enveloping algebra of $\mathrm{SU}(4)$, J. Math. Phys. 17 1452-1467 (1976).
[5] M. Grassl, M. Rotteler and T. Beth, Computing local invariants of qubit quantum systems, Phys. Rev. A58, 1833-1839 (1998).
[6] R. C. King, T. A. Welsh and P D Jarvis, The mixed two-qubit system and the structure of its ring of local invariants, J. Phys. A: Math. Theor. 40 10083-10108 (2007).
[7] V. Gerdt, A. Khvedelidze and Yu. Palii, On the ring of local polynomial invariants for a pair of entangled qubits, Zapiski POMI 373, 104-123 (2009).
[8] M.S. Boudellioua, Computation of the Smith Form for Multivariate Polynomial Matrices Using Maple, American Journal of Computational Mathematics 2, 21-26 (2012).

