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Abstract: The issue of description of the entanglement space E2, i.e.,
the orbit space P+/G , where P+ - the space of mixed states of pair of qubits,
G = U(2) ⊗ U(2) - the group of so-called local unitary transformations,
is discussed. Within the geometrical invariant theory, using the integrity
basis for the ring of G-invariant polynomials, the derivation of equations and
inequalities that determine the entanglement space E2 are outlined.

•Quantum non-localities and orbit space • A motivation to study the
orbits space P+/G for d-dimensional r-partite quantum system is as follows.
A state % ∈ P+ , characterizing a composite quantum system is an element
of the tensor product of Hilbert-Schmidt spaces of operators corresponding
to each r individual subsystem. In accordance with a fixed factorization
d = n1×n2×· · ·×nr, the Local Unitary (LU) group, G = U(n1)⊗· · ·⊗U(nr)
acts on P+ in non-transitive way. This circumstance causes a stratification of
P+ , reflecting a diversity of non-local properties the system exposes. Classes
of the equivalence with respect to the LU transformations form the so-called
entanglement space, the factor space:

E =
Space of states

Group of LU transformations
.
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Thus characterization and classification of a quantum system non-locality
reduces mainly to a classical mathematical problem - description of the orbit
space of compact Lie groups.
•Recipe for the orbit space description • The orbit space of a compact
Lie group action on a linear space can be described in the framework of the
invariant theory within the direction initiated by Processi and Schwarz [1, 2].

Consider the compact Lie group G acting linearly on the real d-dimensional
vector space V and let R[V ]G is the corresponding ring of the G-invariant
polynomials on V . Assume P = (p1, p2, . . . , pq) is a set of homogeneous poly-
nomials that form the integrity basis, R[x1, x2, . . . , xd]

G = R[p1, p2, . . . , pq].
Elements of the integrity basis define the polynomial mapping:

p : V → Rq ; (x1, x2, . . . , xd)→ (p1, p2, . . . , pq) .

Since p is constant on the orbits of G it induces a homeomorphism of the
orbit space V/G and the image X of p-mapping; V/G ' X [3]. In order to
describe X in terms of P uniquely, it is necessary to take into account the
syzygy ideal of P , i.e.,

IP = {h ∈ R[y1, y2, . . . , yq] : h(p1, p2, . . . , pq) = 0 , in R[V ] }.

Let Z ⊆ Rq denote the locus of common zeros of all elements of IP , then Z
is algebraic subset of Rq such that X ⊆ Z . Denoting by R[Z] the restriction
of R[y1, y2, . . . , yq] to Z one can easily verify that R[Z] is isomorphic to the
quotient R[y1, y2, . . . , yq]/IP and thus R[Z] ' R[V ]G . Therefore the subset Z
essentially is determined by R[V ]G, but to describe X the further steps are
required. According to [1, 2] the necessary information on X is encoded in
the structure of q × q matrix with elements given by the inner products of
gradients, grad(pi) :

||Grad||ij = (grad (pi) , grad (pj)) .

Summarizing these observations, the orbit space is identified with the
semi-algebraic variety, defined as points, satisfying two conditions:

a) z ∈ Z, where Z is the surface defined by the syzygy ideal for the
integrity basis of R[V ]G;

b) Grad(z) > 0 .
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•Describing the entanglement space E2 • The general scheme sketched
above has been applied to the analyzes of a 4-dimensional bipartite quantum
system with partition, n1 = n2 = 2 , i.e., a pair of qubits.

To make Procesi-Schwarz method applicable we linearize at first the ad-
joint action of U(2) ⊗ U(2) group on the space H4×4 of 4 × 4 Hermitian
matrices:

(Ad g )% = g % g−1 , g ∈ U(2)⊗ U(2) , (1)

by the mapping H4×4 → R16; % → v = (v1, v2, . . . , v16) and considering on
R16 the linear representation

v′ = Lv , L ∈ U(2)⊗ U(2)⊗ U(2)⊗ U(2) ,

where a line over expression means the complex conjugation. Further using
the integrity basis for R[v]U(2)⊗U(2) , suggested in [4]-[7] one can pass to the
analysis of the semi-positivity of the Grad- matrix and determine the set
of inequalities defining the orbit space R16/U(2) ⊗ U(2) . However, this is
not the end of a story. The orbit space defined in this manner is not the
space of entanglement, namely E2 ⊆ R16/U(2) ⊗ U(2). Indeed, due to the
non-negativity of density matrices the space of physical states is P+ ⊂ R15

defining by a further set of constraints on elements of integrity basis (see
e.g. [7]). Concluding it is worth to stress that analysis of the relevant ge-
ometry of E2 , determining via a complete set of polynomial inequalities in
LU invariants, including both, mentioned here, as well as arising from the
semi-positivity conditions on the density matrix of 2 -qubits, represents a
non-trivial mathematical problem and has highly important consequences
for quantum information theory and quantum computing.
•Computational issues • To derive the inequalities in the LU invariants
determining the orbit space R16/U(2) ⊗ U(2) , one has first to express the
entries of Grad-matrix in terms of the invariants and then compute its Smith
normal form. For the last computation we are going to try recent algo-
rithms [8] and their implementation in Maple. Unlike all previously known
algorithms for reduction of a matrix to the Smith normal form, the algorithms
of paper [8] may work when the entries of a matrix are multivariate poly-
nomials. The ring of such polynomials is not Euclidean (i.e., not principal
ideal) domain that is at the basis of all other algorithms.
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