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Abstract: The issue of description of the entanglement space &, i.e.,
the orbit space P, /G, where P, - the space of mixed states of pair of qubits,
G = U(2) ® U(2) - the group of so-called local unitary transformations,
is discussed. Within the geometrical invariant theory, using the integrity
basis for the ring of G-invariant polynomials, the derivation of equations and
inequalities that determine the entanglement space & are outlined.

eQuantum non-localities and orbit space e A motivation to study the
orbits space P, /G for d-dimensional r-partite quantum system is as follows.
A state p € P, characterizing a composite quantum system is an element
of the tensor product of Hilbert-Schmidt spaces of operators corresponding
to each r individual subsystem. In accordance with a fixed factorization
d = ny Xng X ---XxXn,, the Local Unitary (LU) group, G = U(n;)®---®U(n,)
acts on P, in non-transitive way. This circumstance causes a stratification of
B, reflecting a diversity of non-local properties the system exposes. Classes
of the equivalence with respect to the LU transformations form the so-called
entanglement space, the factor space:

Space of states

B Group of LU transformations
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Thus characterization and classification of a quantum system non-locality
reduces mainly to a classical mathematical problem - description of the orbit
space of compact Lie groups.
eRecipe for the orbit space description e The orbit space of a compact
Lie group action on a linear space can be described in the framework of the
invariant theory within the direction initiated by Processi and Schwarz [1, 2.
Consider the compact Lie group G acting linearly on the real d-dimensional
vector space V and let R[V]“ is the corresponding ring of the G-invariant
polynomials on V. Assume P = (py, pa, ..., p,) is a set of homogeneous poly-
nomials that form the integrity basis, R[zy, g, ..., 74)% = R[p1, pa,...,py)-
Elements of the integrity basis define the polynomial mapping:

p: V- R?:; (21,22, ..., 24) = (P1,D2,- - Dq) -

Since p is constant on the orbits of G it induces a homeomorphism of the
orbit space V/G and the image X of p-mapping; V/G ~ X [3]. In order to
describe X in terms of P uniquely, it is necessary to take into account the
syzygy ideal of P, i.e.,

Ip ={h € Rly1,y2, .-, Yg) : K(p1,p2,...,py) =0, in R[V] }.

Let Z C RY denote the locus of common zeros of all elements of Ip, then Z
is algebraic subset of R? such that X C Z. Denoting by R[Z] the restriction
of Rly1, 2, ...,y to Z one can easily verify that R[Z] is isomorphic to the
quotient R[yy, ya, - . ., y,]/Ip and thus R[Z] ~ R[V]%. Therefore the subset Z
essentially is determined by R[V]®, but to describe X the further steps are
required. According to [1, 2] the necessary information on X is encoded in
the structure of ¢ X ¢ matrix with elements given by the inner products of
gradients, grad(p;) :

||Grad||;; = (grad (p;) , grad (p;)) .

Summarizing these observations, the orbit space is identified with the
semi-algebraic variety, defined as points, satisfying two conditions:

a) z € Z, where Z is the surface defined by the syzygy ideal for the
integrity basis of R[V]%;

b) Grad(z) > 0.



eDescribing the entanglement space &, e The general scheme sketched
above has been applied to the analyzes of a 4-dimensional bipartite quantum
system with partition, ny = ny = 2, i.e., a pair of qubits.

To make Procesi-Schwarz method applicable we linearize at first the ad-
joint action of U(2) ® U(2) group on the space Hyxs4 of 4 x 4 Hermitian
matrices:

(Adglo=gog™', ¢geU2)®U(2), (1)

by the mapping Hixs — R 0 — v = (v1,vs,...,v16) and considering on
R'6 the linear representation

v=Lv, LeUQ2aUQ2aU2) U@,

where a line over expression means the complex conjugation. Further using
the integrity basis for R[v]V@®V®2)  suggested in [4]-[7] one can pass to the
analysis of the semi-positivity of the Grad- matrix and determine the set
of inequalities defining the orbit space R'®/U(2) ® U(2). However, this is
not the end of a story. The orbit space defined in this manner is not the
space of entanglement, namely & C R'®/U(2) ® U(2). Indeed, due to the
non-negativity of density matrices the space of physical states is B, C R®
defining by a further set of constraints on elements of integrity basis (see
e.g. [7]). Concluding it is worth to stress that analysis of the relevant ge-
ometry of &, determining via a complete set of polynomial inequalities in
LU invariants, including both, mentioned here, as well as arising from the
semi-positivity conditions on the density matrix of 2 -qubits, represents a
non-trivial mathematical problem and has highly important consequences
for quantum information theory and quantum computing.

e Computational issues e To derive the inequalities in the LU invariants
determining the orbit space R!/U(2) ® U(2), one has first to express the
entries of Grad-matrix in terms of the invariants and then compute its Smith
normal form. For the last computation we are going to try recent algo-
rithms [8] and their implementation in Maple. Unlike all previously known
algorithms for reduction of a matrix to the Smith normal form, the algorithms
of paper [8] may work when the entries of a matrix are multivariate poly-
nomials. The ring of such polynomials is not Euclidean (i.e., not principal
ideal) domain that is at the basis of all other algorithms.
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