On the inequalities defining the entanglement space of 2-qubits

 $\underline{\text{V.P.Gerdt}}^{a}$, A.M.Khvedelidze^{a,b,c} and Yu.G.Palii^a

^a Joint Institute for Nuclear Research, Dubna, Russia
^b A Razmadze Mathematical Institute, Tbilisi, Georgia
^c University of Georgia, Tbilisi, Georgia

Abstract: The issue of description of the entanglement space \mathcal{E}_2 , i.e., the orbit space \mathfrak{P}_+/G , where \mathfrak{P}_+ - the space of mixed states of pair of qubits, $G = U(2) \otimes U(2)$ - the group of so-called local unitary transformations, is discussed. Within the geometrical invariant theory, using the integrity basis for the ring of G-invariant polynomials, the derivation of equations and inequalities that determine the entanglement space \mathcal{E}_2 are outlined.

•Quantum non-localities and orbit space • A motivation to study the orbits space \mathfrak{P}_+/G for *d*-dimensional *r*-partite quantum system is as follows. A state $\varrho \in \mathfrak{P}_+$, characterizing a composite quantum system is an element of the tensor product of Hilbert-Schmidt spaces of operators corresponding to each *r* individual subsystem. In accordance with a fixed factorization $d = n_1 \times n_2 \times \cdots \times n_r$, the Local Unitary (LU) group, $G = U(n_1) \otimes \cdots \otimes U(n_r)$ acts on \mathfrak{P}_+ in non-transitive way. This circumstance causes a stratification of \mathfrak{P}_+ , reflecting a diversity of non-local properties the system exposes. Classes of the equivalence with respect to the LU transformations form the so-called entanglement space, the factor space:

$$\mathcal{E} = \frac{\text{Space of states}}{\text{Group of LU transformations}}$$
.

Thus characterization and classification of a quantum system non-locality reduces mainly to a classical mathematical problem - description of the orbit space of compact Lie groups.

•Recipe for the orbit space description • The orbit space of a compact Lie group action on a linear space can be described in the framework of the invariant theory within the direction initiated by Processi and Schwarz [1, 2].

Consider the compact Lie group G acting linearly on the real *d*-dimensional vector space V and let $\mathbb{R}[V]^{G}$ is the corresponding ring of the G-invariant polynomials on V. Assume $\mathcal{P} = (p_1, p_2, \ldots, p_q)$ is a set of homogeneous polynomials that form the integrity basis, $\mathbb{R}[x_1, x_2, \ldots, x_d]^{G} = \mathbb{R}[p_1, p_2, \ldots, p_q]$. Elements of the integrity basis define the polynomial mapping:

$$p: \qquad V \to \mathbb{R}^q; \qquad (x_1, x_2, \dots, x_d) \to (p_1, p_2, \dots, p_q).$$

Since p is constant on the orbits of G it induces a homeomorphism of the orbit space V/G and the image X of p-mapping; $V/G \simeq X$ [3]. In order to describe X in terms of \mathcal{P} uniquely, it is necessary to take into account the syzygy ideal of \mathcal{P} , i.e.,

$$I_{\mathcal{P}} = \{ h \in \mathbb{R}[y_1, y_2, \dots, y_q] : h(p_1, p_2, \dots, p_q) = 0, \text{ in } \mathbb{R}[V] \}.$$

Let $Z \subseteq \mathbb{R}^q$ denote the locus of common zeros of all elements of $I_{\mathcal{P}}$, then Z is algebraic subset of \mathbb{R}^q such that $X \subseteq Z$. Denoting by $\mathbb{R}[Z]$ the restriction of $\mathbb{R}[y_1, y_2, \ldots, y_q]$ to Z one can easily verify that $\mathbb{R}[Z]$ is isomorphic to the quotient $\mathbb{R}[y_1, y_2, \ldots, y_q]/I_{\mathcal{P}}$ and thus $\mathbb{R}[Z] \simeq \mathbb{R}[V]^G$. Therefore the subset Z essentially is determined by $\mathbb{R}[V]^G$, but to describe X the further steps are required. According to [1, 2] the necessary information on X is encoded in the structure of $q \times q$ matrix with elements given by the inner products of gradients, $\operatorname{grad}(p_i)$:

$$||\operatorname{Grad}||_{ij} = (\operatorname{grad}(p_i), \operatorname{grad}(p_j)).$$

Summarizing these observations, the orbit space is identified with the semi-algebraic variety, defined as points, satisfying two conditions:

- a) $z \in Z$, where Z is the surface defined by the syzygy ideal for the integrity basis of $\mathbb{R}[V]^{G}$;
- b) $\operatorname{Grad}(z) \ge 0$.

•Describing the entanglement space \mathcal{E}_2 • The general scheme sketched above has been applied to the analyzes of a 4-dimensional bipartite quantum system with partition, $n_1 = n_2 = 2$, i.e., a pair of qubits.

To make Procesi-Schwarz method applicable we linearize at first the adjoint action of U(2) \otimes U(2) group on the space $\mathcal{H}_{4\times4}$ of 4×4 Hermitian matrices:

$$(\operatorname{Ad} g)\varrho = g \,\varrho \, g^{-1} \,, \qquad g \in \operatorname{U}(2) \otimes \operatorname{U}(2) \,, \tag{1}$$

by the mapping $\mathcal{H}_{4\times 4} \to \mathbb{R}^{16}$; $\rho \to \boldsymbol{v} = (v_1, v_2, \dots, v_{16})$ and considering on \mathbb{R}^{16} the linear representation

$$\boldsymbol{v}' = L\boldsymbol{v}, \qquad L \in \mathrm{U}(2) \otimes \mathrm{U}(2) \otimes \overline{\mathrm{U}(2) \otimes \mathrm{U}(2)},$$

where a line over expression means the complex conjugation. Further using the integrity basis for $\mathbb{R}[v]^{U(2)\otimes U(2)}$, suggested in [4]-[7] one can pass to the analysis of the semi-positivity of the Grad- matrix and determine the set of inequalities defining the orbit space $\mathbb{R}^{16}/U(2) \otimes U(2)$. However, this is not the end of a story. The orbit space defined in this manner is not the space of entanglement, namely $\mathcal{E}_2 \subseteq \mathbb{R}^{16}/U(2) \otimes U(2)$. Indeed, due to the non-negativity of density matrices the space of physical states is $\mathfrak{P}_+ \subset \mathbb{R}^{15}$ defining by a further set of constraints on elements of integrity basis (see e.g. [7]). Concluding it is worth to stress that analysis of the relevant geometry of \mathcal{E}_2 , determining via a complete set of polynomial inequalities in LU invariants, including both, mentioned here, as well as arising from the semi-positivity conditions on the density matrix of 2 -qubits, represents a non-trivial mathematical problem and has highly important consequences for quantum information theory and quantum computing.

• Computational issues • To derive the inequalities in the LU invariants determining the orbit space $\mathbb{R}^{16}/\mathrm{U}(2) \otimes \mathrm{U}(2)$, one has first to express the entries of Grad-matrix in terms of the invariants and then compute its Smith normal form. For the last computation we are going to try recent algorithms [8] and their implementation in Maple. Unlike all previously known algorithms for reduction of a matrix to the Smith normal form, the algorithms of paper [8] may work when the entries of a matrix are multivariate polynomials. The ring of such polynomials is not Euclidean (i.e., not principal ideal) domain that is at the basis of all other algorithms.

References

- C. Procesi and G. Schwarz, The geometry of orbit spaces and gauge symmetry breaking in supersymmetric gauge theories, Phys. Lett. B 161, 117-121 (1985).
- [2] C. Procesi and G. Schwarz, Inequalities defining orbit spaces, Invent.math. 81 539-554 (1985).
- [3] D. Cox, J, Little and D. O'Shea, Ideals, Varieties, and Algorithms, Third Edition, Springer, (2007).
- [4] C. Quesne, $SU(2) \otimes SU(2)$ scalars in the enveloping algebra of SU(4), J. Math. Phys. **17** 1452–1467 (1976).
- [5] M. Grassl, M. Rotteler and T. Beth, Computing local invariants of qubit quantum systems, Phys. Rev. A58, 1833-1839 (1998).
- [6] R. C. King, T. A. Welsh and P D Jarvis, The mixed two-qubit system and the structure of its ring of local invariants, J. Phys. A: Math. Theor. 40 10083-10108 (2007).
- [7] V. Gerdt, A. Khvedelidze and Yu. Palii, On the ring of local polynomial invariants for a pair of entangled qubits, Zapiski POMI **373**, 104-123 (2009).
- [8] M.S. Boudellioua, Computation of the Smith Form for Multivariate Polynomial Matrices Using Maple, American Journal of Computational Mathematics 2, 21-26 (2012).