The Homogeneous Gröbner Basis for the SU(3)-gauge Mechanics

Vladimir Gerdt, Arsen Khvedelidze and Yuri Palii

Laboratory of Information Technologies Joint Institute for Nuclear Research
141980, Dubna
Russia

SU(3) Yang-Mills Theory

The Lagrangian

$$
L=-\frac{1}{4} F_{\mu \nu}^{a} F_{a}^{\mu \nu},
$$

the components of the field-strength tensor

$$
F_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+\mathrm{f}^{a b c} A_{\mu}^{b} A_{\nu}^{c}
$$

The commutator of the Gell-Mann matrices

$$
\left\{\lambda_{a}, \lambda_{b}\right\}=2 \mathrm{if}^{\text {fac }} \lambda_{c}
$$

where $\mathrm{f}^{a b c}$ are the structure constants of $S U(3)$.

The Light-Cone

The Cartesian coordinates: $x^{\mu}=\left(x^{0}, x^{1}, x^{2}, x^{3}\right)$
Minkowski metric tensor: $\eta=\operatorname{diagonal}(+1,-1,-1,-1)$.
The light-cone: coordinates $x^{\mu}=\left(x^{+}, x^{-}, x^{\perp}\right)$

$$
x^{ \pm}:=\frac{1}{\sqrt{2}}\left(x^{0} \pm x^{3}\right), \quad x^{\perp}:=x^{k}, \quad k=1,2 .
$$

metric: $\eta_{+-}=\eta_{-+}=-\eta_{11}=-\eta_{22}=1$.
The light-cone Yang-Mills mechanics: the fields depend only on the light-cone "time variable" x^{+}

$$
A_{ \pm}^{a}=A_{ \pm}^{a}\left(x^{+}\right), A_{k}^{a}=A_{k}^{a}\left(x^{+}\right)
$$

Lagrangian of the light-cone Yang-Mills mechanics

$$
\begin{aligned}
& L:= \frac{1}{2}\left(F_{+-}^{a} F_{+-}^{a}+2 F_{+k}^{a} F_{-k}^{a}-F_{12}^{a} F_{12}^{a}\right), \\
& F_{+-}^{a}:=\dot{A}_{-}^{a}+\mathrm{f}^{a b c} A_{+}^{b} A_{-}^{c}, \\
& F_{+k}^{a}:=\dot{A}_{k}^{a}+\mathrm{f}^{a b c} A_{+}^{b} A_{k}^{c}, \\
& F_{-k}^{a}:=\mathrm{f}^{a b c} A_{-}^{b} A_{k}^{c}, \\
& F_{i j}^{a}:=\mathrm{f}^{a b c} A_{i}^{b} A_{j}^{c}, \quad i, j, k=1,2, \\
& \dot{A}_{\mu}^{a}:=\partial A_{\mu}^{a} / \partial x^{+}
\end{aligned}
$$

The system is degenerated

$$
\left|\frac{\partial^{2} L}{\partial \dot{A} \partial \dot{A}}\right|=0
$$

Hamiltonian Formulation

The Legendre transformation

$$
\begin{aligned}
& \pi_{a}^{+}:=\frac{\partial L}{\partial \dot{A_{+}^{a}}}=0, \\
& \pi_{a}^{-}:=\frac{\partial L}{\partial \dot{A} \dot{A_{-}^{a}}}=\dot{A_{-}^{a}}+\mathrm{f}^{a b c} A_{+}^{b} A_{-}^{c}, \\
& \pi_{a}^{k}:=\frac{\partial \boldsymbol{L}}{\partial \dot{A_{k}^{a}}}=\mathrm{f}^{a b c} A_{-}^{b} \boldsymbol{A}_{k}^{c}
\end{aligned}
$$

gives the canonical Hamiltonian

$$
H_{C}=\frac{1}{2} \pi_{a}^{-} \pi_{a}^{-}-\mathrm{f}^{a b c} A_{+}^{a}\left(A_{-}^{b} \pi_{c}^{-}+A_{k}^{b} \pi_{c}^{k}\right)+\frac{1}{2} F_{12}^{a} F_{12}^{a} .
$$

The canonical Poisson brackets

$$
\left\{A_{ \pm}^{a}, \pi_{b}^{ \pm}\right\}=\delta_{b}^{a}, \quad\left\{A_{i}^{a}, \pi_{b}^{j}\right\}=\delta_{i}^{j} \delta_{b}^{a}
$$

Dirac procedure for a constrained theory

The primary constraints

$$
\varphi_{a}^{(1)}:=\pi_{a}^{+}=0, \quad \chi_{k}^{a}:=\pi_{k}^{a}+\mathrm{f}^{a b c} A_{-}^{b} A_{k}^{c}=0
$$

have kinematical character and must be preserved during the evolution governed by the total Hamiltonian

$$
H_{T}:=H_{C}+u_{a} \varphi_{a}^{(1)}+v_{k}^{a} \chi_{k}^{a},
$$

so the trajectories remain on the constraint surface Σ all time,

$$
\dot{\varphi}_{\alpha}^{(1)}=\left\{\varphi_{\alpha}^{(1)}, H_{T}\right\} \stackrel{\Sigma}{=} 0, \quad \dot{\chi}_{k}^{a}=\left\{\chi_{k}^{a}, H_{T}\right\} \stackrel{\Sigma}{=} 0 .
$$

$\stackrel{\Sigma}{\underline{\Sigma}}$: the right-hand side of vanishes modulo the constraints.

$$
\dot{\varphi}_{a}^{(1)}=\left\{\pi_{a}^{+}, H_{T}\right\}=\mathrm{f}^{a b c}\left(A_{-}^{b} \pi_{c}^{-}+A_{k}^{b} \pi_{c}^{k}\right) \stackrel{\Sigma}{=} 0
$$

this generates secondary constraints

$$
\begin{gathered}
\varphi_{a}^{(2)}:=\mathrm{f}^{\mathrm{abc}}\left(A_{-}^{b} \pi_{c}^{-}+A_{k}^{b} \pi_{c}^{k}\right)=0, \\
\dot{\varphi}_{\alpha}^{(2)}=\left\{\varphi_{\alpha}^{(2)}, H_{T}\right\} \stackrel{\Sigma}{=} 0 .
\end{gathered}
$$

The same procedure for χ_{k}^{a} gives the consistency conditions

$$
\begin{gathered}
\dot{\chi}_{i}^{a}=\left\{\chi_{i}^{a}, H_{c}\right\}+\left\{\chi_{i}^{a}, \chi_{j}^{b}\right\} v_{j}^{b} \stackrel{\Sigma}{=} 0 \\
\left\{\chi_{i}^{a}, \chi_{j}^{b}\right\}=\mathrm{M}_{a b} \delta_{i j}, \quad \mathrm{M}_{a b}:=2 \mathrm{f}^{a b c} A_{-}^{c} . \\
\operatorname{det} \mathrm{M}=0,
\end{gathered}
$$

The further analysis depends on n in $S U(n)$-Yang-Mills theory.

$$
\operatorname{rank} \mathrm{M}=\left(n^{2}-1\right)-\operatorname{rank} \operatorname{su}(n),
$$

at least for $n=2,3,4$.

null-vectors of M for $S U(n)$

$n=2,3,4, \ldots$

$$
e_{a}^{(1)}:=A_{-}^{a}, \quad \psi_{i}:=e_{a}^{(1)} \chi_{i}^{a}=A_{-}^{a} \pi_{a}^{i},
$$

$n=3,4, \ldots$

$$
e_{a}^{(2)}:=\mathrm{d}^{a b c} A_{-}^{b} A_{-}^{c}, \quad \varsigma_{i}:=e_{a}^{(2)} \chi_{i}^{a}=\mathrm{d}^{a b c} A_{-}^{a} A_{-}^{b} \pi_{c}^{i} .
$$

$n=4, \ldots$
$e_{a}^{(3)}:=\mathrm{d}^{a b c} \mathrm{~d}^{c d e} A_{-}^{b} A_{-}^{d} A_{-}^{e}, \quad \xi_{i}:=e_{a}^{(3)} \chi_{i}^{a}=\mathrm{d}^{a b c} \mathrm{~d}^{c d e} A_{-}^{a} A_{-}^{b} A_{-}^{d} \pi_{e}^{i}$.

$$
\chi_{i}^{a}:=\pi_{i}^{a}+\mathrm{f}^{a b c} A_{-}^{b} A_{i}^{c}
$$

$$
\chi_{i}^{a} \quad \rightarrow \quad\left(\chi_{\perp}, \psi_{i}, \varsigma_{i}\right)
$$

χ_{\perp} are projections of χ_{i}^{a} by vectors, which are orthogonal to null-vectors of matrix $\left\|\left\{\chi_{i}^{a}, \chi_{j}^{b}\right\}\right\|$. The consistency conditions for χ_{\perp} determine correspondig Lagrangian multipliers v_{\perp} in the total Hamiltonian.
While for ψ_{i}, s_{i} the Dirac procedure should be continued.

$$
\begin{aligned}
&\left\{\psi_{i}, H_{T}\right\}= \pi_{a}^{-} \pi_{a}^{i}+\mathrm{f}^{a b c} A_{-}^{a} A_{j}^{b} F_{j i}^{c} \\
&=-A_{i}^{a} \varphi_{a}^{(2)}+\pi_{a}^{-} \chi_{i}^{a}+\mathrm{f}^{a b c} A_{i}^{a} A_{k}^{b} \chi_{k}^{c} \stackrel{\Sigma}{=} 0 \\
&\left\{\varsigma_{i}, H_{T}\right\} \stackrel{\Sigma}{=} \zeta_{i} \\
& \zeta_{i}=\mathrm{d}^{a b c} A_{i}^{a} F_{-k}^{b} F_{-k}^{c}
\end{aligned}
$$

Now the total Hamiltonian is

$$
H_{T}=H_{C}+\chi_{\perp} v_{\perp}+\psi_{k} v_{k}^{\psi}+\varsigma_{k} v_{k}^{\varsigma}+\phi_{a} u_{a}
$$

where $v_{k}^{\psi}, v_{k}^{\varsigma}, u_{a}$ are still unknown Lagrangian multipliers. The consistency condition

$$
\left\{\zeta_{i}, H_{T}\right\}=\left\{\zeta_{i}, H_{C}\right\}+\left\{\zeta_{i}, \chi_{\perp}\right\} v_{\perp}+\left\{\zeta_{i}, \psi_{k}\right\} v_{k}^{\psi}+\left\{\zeta_{i}, s_{k}\right\} v_{k}^{\varsigma} \stackrel{\Sigma}{=} 0
$$

where

$$
\left\{\psi_{i}, \zeta_{j}\right\}=\delta_{i j} \mathrm{~d}^{a b c} A_{-}^{a}\left(F_{-k}^{b} \chi_{k}^{c}-\frac{1}{2} A_{-}^{b} \varphi_{c}^{(2)}\right) \stackrel{\Sigma}{=} 0
$$

fixes v_{k}^{ς} because

$$
\left\{s_{i}, \zeta_{j}\right\}=-\delta_{i j} \mathrm{~d}^{a b c} \mathrm{~d}^{c p q} A_{-}^{a} A_{-}^{b} F_{-k}^{p} F_{-k}^{q}
$$

is not zero on the constraint surface. So we have found all constraints.

The homogeneous Gröbner basis

With the grading Γ determined by the weights of the variables:

$$
\Gamma\left(\pi_{a}^{\mu}\right)=2, \quad \Gamma\left(A_{\mu}^{a}\right)=1, \quad a=1,2, \ldots, 8, \quad \mu=-, 1,2,
$$

we have the set of homogeneous polynomials ($k=1,2$)

$$
\begin{array}{c|l}
\Gamma-\text { degree } & \text { Constraints } \\
\hline \hline 2 & \chi_{k}^{a}=\pi_{a}^{k}-\mathrm{f}^{a b c} A_{-}^{b} A_{k}^{c} \\
\hline 3 & \varphi_{a}^{(2)}=\mathrm{f}_{a b c}\left(A_{-}^{b} \pi_{c}^{-}+A_{k}^{b} \pi_{c}^{k}\right) \\
\hline 5 & \zeta_{i}=d_{a b c} A_{i}^{a} F_{-k}^{b} F_{-k}^{c}
\end{array}
$$

The lexicographical order is

$$
\pi_{a}^{-} \succ \pi_{b}^{1} \succ \pi_{c}^{2} \succ A_{-}^{a} \succ A_{1}^{b} \succ A_{2}^{c} \quad a, b, c=1,2, \ldots, 8,
$$

and for variables with the same spatial index μ we choose

$$
\pi_{a}^{\mu} \succ \pi_{b}^{\mu} \succ A_{\mu}^{a} \succ A_{\mu}^{b} \quad \text { if } \quad a<b .
$$

To simplifiy calculations we exlude some numerical cefficients by redefinition of variables

$$
\begin{array}{rlr}
A_{-}^{8} \rightarrow A_{-}^{8} / \sqrt{3} & P_{8}^{-} \rightarrow \sqrt{3} P_{8}^{-} \\
A_{i}^{8} \rightarrow A_{i}^{8} / \sqrt{3} & P_{8}^{i} \rightarrow \sqrt{3} P_{8}^{i}
\end{array}
$$

and multiplying of constraints by approciate factors

$$
\begin{gather*}
\chi_{k}^{a} \rightarrow 2 \times{\underset{\sim}{k}}_{\chi_{k}^{a}}^{\phi_{a}} \rightarrow 2 \times \stackrel{(2)}{\phi}_{a} \quad \chi_{k}^{8} \rightarrow \chi_{k}^{8} / \sqrt{3} \\
\phi_{8} \rightarrow \phi_{8} / \sqrt{3} \tag{2}\\
\zeta_{i} \rightarrow 8 \times \zeta_{i} \tag{2}
\end{gather*}
$$

With such a choice of grading the constraints χ_{k}^{a} and $\varphi^{(2)}$ are the lowest degree homogeneous Gröbner basis elements G_{2} and G_{3} of the order 2 and 3 , respectively. Higher degree elements of the basis are constructed step by step by doing the following manipulations:
(i) formation of all S-polynomials $\left(G_{i}, G_{j}\right)$;
(ii) elimination of some superfluous S-polynomials according to the Buchberger's criteria;
(iii) computation of the normal forms of S-polynomials modulo the lower order elements with respect to the grading chosen.

The results of computation of the Gröbner basis elements of different orders n are shown in the following table where we explicitly indicated only S-polynomials with non-vanishing normal form.

G_{n}	Polynomials $\#$	Constraints and S-polynomials
G_{2}	16	χ_{k}^{a}
G_{3}	8	$\varphi_{a}^{(2)}$
G_{4}	15	$\left(G_{3}, G_{3}\right)$
G_{5}	14	$\zeta,\left(\zeta_{i}, G_{j}\right) \quad i=1,2 \quad j=2,3,4$ G_{6}
	13	$\left(G_{2}, G_{4}\right),\left(G_{3}, G_{3}\right),\left(G_{3}, G_{4}\right),\left(G_{4}, G_{4}\right)$
		$\left(G_{2}, G_{5}\right),\left(G_{3}, G_{5}\right),\left(G_{4}, G_{5}\right),\left(G_{5}, G_{5}\right)$
$\left(G_{3}, G_{4}\right),\left(G_{4}, G_{4}\right)$		

With the lexicographical order

$$
A_{1}^{b} \succ A_{2}^{c} \succ A_{-}^{a} \succ \pi_{b}^{1} \succ \pi_{c}^{2} \succ \pi_{a}^{-} \quad a, b, c=1,2, \ldots, 8,
$$

G_{n}	Polynomials \#	Constraints and S-polynomials
G_{2}	16	χ_{k}^{2}
G_{3}	72	$\left(G_{2}, G_{2}\right)$
G_{4}	176	$\left(G_{2}, G_{3}\right),\left(G_{3}, G_{3}\right)$
G_{5}	376	$\left(G_{2}, G_{4}\right),\left(G_{3}, G_{3}\right),\left(G_{3}, G_{4}\right),\left(G_{4}, G_{4}\right)$

G_{3} contains:

$$
\begin{aligned}
& \psi_{i}=A_{-}^{a} \chi_{i}^{a}, \quad i=1,2 \\
& A_{1}^{a} \chi_{1}^{a}, \quad A_{2}^{a} \chi_{2}^{a}, \quad A_{1}^{a} \chi_{2}^{a}+A_{2}^{a} \chi_{1}^{a} .
\end{aligned}
$$

ζ_{i} have other, "more simpler" form ($F_{-k}^{a}=\mathrm{f}^{a b c} A_{-}^{b} A_{k}^{c}$)

$$
\zeta_{i}=\mathrm{d}^{a b c} A_{i}^{a} F_{-k}^{b} F_{-k}^{c} \quad \rightarrow \quad \zeta_{i}=\mathrm{d}^{a b c} A_{i}^{a} P_{b}^{k} P_{c}^{k}
$$

The actual calculations were performed using the the computer algebra system Mathematica (version 5.0) running on the machine $2 x$ Opteron-242 (1.6 Ghz) with 6Gb of RAM and have take about a month.
For the case of the structure group $S U(2)$ we used the built-in-function GroebnerBasis with monomial order DegreeReverseLexicographic
$\left\{\pi_{1}^{1}, \pi_{1}^{2}, \pi_{2}^{1}, \pi_{2}^{2}, \pi_{3}^{1}, \pi_{3}^{2}, \pi_{1}^{-}, \pi_{2}^{-}, \pi_{3}^{-}, A_{1}^{1}, A_{2}^{1}, A_{1}^{2}, A_{2}^{2}, A_{1}^{3}, A_{2}^{3}, A_{-}^{1}, A_{-}^{2}, \boldsymbol{A}_{-}^{3}\right\}$.
In this case the construction of the complete homogeneous Gröbner basis of 64 elements takes about 60 seconds.

Conclusions

- Gröbner bases technique makes feasible computation of the complete set of constraints in the frame of Dirac's Hamiltonian formalism for degenerate mechanical systems. We have found a new set of constraints depending on the rank of the structure group.
- Due to the large number of variables and constraints the special homogeneous Groebner basis has been constructed in Mathematica codes.
- The main part of time was spend for calculations which explicitly break down the invariance of the gauge theory.

