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LIGHT-CONE YANG–MILLS MECHANICS: SU(2) VS. SU(3)

V. P. Gerdt,∗ Y. G. Palii,∗† and A. M. Khvedelidze∗‡

We investigate the light-cone SU(n) Yang–Mills mechanics formulated as the leading order of the long-

wavelength approximation to the light-front SU(n) Yang–Mills theory. In the framework of the Dirac

formalism for degenerate Hamiltonian systems, for models with the structure groups SU(2) and SU(3),

we determine the complete set of constraints and classify them. We show that the light-cone mechanics

has an extended invariance: in addition to the local SU(n) gauge rotations, there is a new local two-

parameter Abelian transformation, not related to the isotopic group, that leaves the Lagrangian system

unchanged. This extended invariance has one profound consequence. It turns out that the light-cone

SU(2) Yang–Mills mechanics, in contrast to the well-known instant-time SU(2) Yang–Mills mechanics,

represents a classically integrable system. For calculations, we use the technique of Gröbner bases in the

theory of polynomial ideals.
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1. Introduction

In his conceptual 1949 paper, where he stated a principally new concept of the three forms of relativistic
dynamics, Dirac wrote [1] (also see [2]): “There is no conclusive arguments in favor of one or other of the
forms. Even if it could be decided that one of them is the most convenient, this would not necessarily
be the one chosen by nature, in the event that only one of them is possible for atomic systems. Thus all
three forms should be studied further.” After this seminal paper, investigations of the field theories showed
prinicpal differences between the introduced forms of dynamics. The simplest example of a free scalar
field theory formulated in the light-front form already clearly shows this difference. Here, in contrast to
the instant-time evolution, the theory is degenerate because of the choice of the light-like variable x+ as
the time parameter. The corresponding zero modes of the field Fourier decomposition with respect to the
coordinate x− (see [3] play the principal role in the consistent description of interactions in the formulation
of the light-front field theory. Here, we intend to discuss one aspect of the zero-mode dynamics related
to the local symmetry manifestation in gauge theories. We consider a mechanical model, the light-cone

SU(n) Yang–Mills gauge mechanics, that describes the dynamics of the zero modes of the light-cone SU(n)
gluodynamics completely separated from all other normal modes. In other words, we study the lowest order
of the long-wavelength approximation to the light-front form of the Yang–Mills field theory. It turns out
that in comparison with the well-known long-wavelength approximation in the instant form,1 the light-cone
SU(n) Yang–Mills mechanics has several new, unusual features. Among them, we note the dependence of
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the structure and constraint set on the rank of the isotopic group and the presence of additional first-class
constraints generated by the new local symmetry of the model. Moreover, it turns that as a result of
resolving all constraints, the light-cone SU(2) Yang–Mills mechanics is a classically integrable system. A
brief discussion of these issues is the subject of our further exposition.

In Sec. 2, we formulate the light-cone SU(n) Yang–Mills mechanics and present the complete set of
constraints in the cases of the structure groups SU(2) and SU(3). In Sec. 3, we construct the generator
of gauge transformations taking the new local symmetry of the light-cone mechanics into account. In
Sec. 4, we state the results of the Hamiltonian reduction of the SU(2) model. Because the calculations
become extremely intricate and tedious for the structure group SU(3), we calculate using a computer
algebra program. For this, a calculation method was developed and applied based on an algorithmic
approach to commutative algebra, the technique of Gröbner bases [16]–[23]. In the appendix, we present
the homogeneous Gröbner basis especially constructed for this purpose.

2. Light-cone Yang–Mills mechanics

Below, we formulate the light-cone SU(n) Yang–Mills mechanics as the model determined by the
leading order of the long-wavelength approximation to the light-front SU(n) Yang–Mills field theory. The
coordinate-free representation of the action of SU(n) Yang–Mills fields in the four-dimensional Minkowski
space M4 endowed with the metric η is

S :=
1
g2
0

∫
M4

trF ∧ ∗F, (1)

where g0 is a coupling constant and the curvature 2-form F := dA+A∧A is constructed from the connection
1-form A. The connection and curvature take values in the Lie algebra su(n) in which some basis T a is
chosen,

A = AaT a, F = F aT a, a = 1, 2, . . . , n2 − 1.

The metric η enters the action through the dual field-strength tensor

∗Fµν :=
1
2

√
− det η εµναβFαβ

with the totally antisymmetric Levi-Civita tensor εµναβ .
To formulate the light-cone SU(n) mechanics, we write the connection 1-form A in the so-called light-

front basis,
A := A+ dx+ + A− dx− + Ak dxk, k = 1, 2, (2)

where the basic 1-forms dx± are dual to the vectors e± := (e0 ± e3)/
√

2 tangent to the light-cone. The
corresponding light-cone coordinates xµ = (x+, x−, x⊥) are

x± :=
1√
2
(x0 ± x3), x⊥ := xk, k = 1, 2,

and the nonzero components of the metric are η+− = η−+ = −η11 = −η22 = 1.
Supposing that the components of the connection 1-form A in (2) are functions only of the time

coordinate x+,
A± = A±(x+), Ak = Ak(x+),

and factoring the spatial volume V (3), we reduce action (1) to

Slc :=
V (3)

2g2
0

∫
dx+ (F a

+−F a
+− + 2F a

+kF a
−k − F a

12F
a
12). (3)
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Fixing the coupling constant g2
0/V (3) = 1, we take action (3) as the action of the light-cone SU(n) Yang–

Mills mechanics with the Lagrangian

L :=
1
2
(F a

+−F a
+− + 2F a

+kF a
−k − F a

12F
a
12). (4)

Lagrangian (4) is written in terms of the following light-cone components of the field-strength tensor in the
light-front metric:

F a
+− :=

∂Aa
−

∂x+
+ fabcAb

+Ac
−, F a

+k :=
∂Aa

k

∂x+
+ fabcAb

+Ac
k,

F a
−k := fabcAb

−Ac
k,

F a
ij := fabcAb

iA
c
j , i, j, k = 1, 2,

where fabc are the structure constants of SU(n). Lagrangian (4) defines the light-cone SU(n) Yang–Mills
mechanics with 4(n2−1) degrees of freedom A±, Ak, and the evolution paramter τ := x+, the light-front
time. Because the Yang–Mills theory is gauge invariant and because the instant-time states in the light-front
dynamics are given at the light-cone characteristics, not all of the equations of motion are of the second
order in τ (see, e.g., the discussion in [3], [24]). In other words, some of the Euler–Lagrange equations that
follow from (4) define constraints in the configuration space. In the Hamiltonian description, this can be
seen as follows. The Legendre transformation gives the momentum π−

a canonically conjugate to Aa
−,

π−
a :=

∂L

∂Ȧa
−

= Ȧa
− + fabcAb

+Ac
−.

But the equations for the momenta π+
a and πk

a canonically conjugate to Aa
+ and Aa

k lead to the set of
primary constraints

ϕ(1)
a := π+

a = 0, (5)

χa
k := πk

a − fabcAb
−Ac

k = 0. (6)

The presence of primary constraints affects the dynamics of the degenerate system. Its evolution is given
by the total Hamiltonian

Ht := Hc + Ua(τ)ϕ(1)
a + V a

k (τ)χa
k,

which differs from the Hamiltonian

Hc =
1
2
π−

a π−
a − fabcAb

+(Ac
−π−

a + Ac
kπk

a) +
1
2
F a

12F
a
12

by a linear combination of the primary constraints with the indeterminate Lagrange multipliers Ua(τ) and
V a

k (τ).
We should verify the dynamical self-consistency of primary constraints (5) using the total Hamiltonian

and the canonical Poisson brackets of the phase variables

{Aa
±, π±

b } = δa
b , {Aa

k, πl
b} = δl

kδa
b .

From the requirement of conservation of the primary constraints ϕ
(1)
a , we have

0 = ϕ̇(1)
a = {π+

a , Ht} = fabc(Ab
−π−

c + Ab
kπk

c ), (7)
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while the same procedure for the primary constraints χa
k leads to the self-consistency conditions on the

Lagrangian multipliers V a
k (τ)

0 = χ̇a
k = {χa

k, Hc} − 2fabcAb
−V c

k . (8)

Consistency conditions (7) thus define the n2−1 secondary constraints

ϕ(2)
a := fabc(Ab

−π−
c + Ab

kπk
c ) = 0, (9)

which satisfy the su(n) algebra, {
ϕ(2)

a , ϕ
(2)
b

}
= fabcϕ(2)

c .

But the analysis of consistency conditions (8) is a more complicated task. First, the number of Lagrange
multipliers that can be determined from (8) depends on the rank of the structure group. This follows directly
from the form of the Poisson brackets of the constraints χa

i ,

{χa
i , χb

j} = 2fabcAc
−δij .

We analyzed the simplest case of rank 1 (the special unitary group SU(2)) in our previous papers. The
constraints of the SU(2) model, including separating them into the first and second classes, were analyzed
in [20]–[22]. Below, we briefly present the previous results and then discuss the model with the first
nontrivial rank-2 structure group, the light-cone SU(3) Yang–Mills mechanics, in detail.

2.1. The structure group SU(2). For the basis of the su(2) algebra, we choose the Pauli matrices
σ1, σ2, and σ3. The structure constants are then given by the totally antisymmetric three-dimensional
Levi-Civita symbol:

fabc := εabc, ε123 = 1.

According to Eqs. (5) and (6), there are (22 − 1) + (22 − 1) × 2 = 9 primary constraints ϕ
(1)
a and χa

k.
Consistency condition (8) for the primary constraints χa

k leads to the following picture of the constraints in
the model:

1. Apart from the indicated first-class constraints (the Abelian π+
a and the non-Abelian ϕ

(2)
a ), there

are two more Abelian constraints without an analogue in the instant form of the SU(2) mechanics,
ψk := Aa

−χa
k. We note that Aa

− is a null vector of the matrix Cab := εabcA
c
− consisting of the Poisson

brackets of the constraints χa
k.

2. The remaining four constraints from the set χa
k, forming an orthogonal complement to the constraints

ψk, χa
k⊥ := χa

k − Aa
−(Ab

−χb
k), are second class and satisfy the relations

{χa
i⊥, χb

j⊥} = 2εabcAc
−δij ,

{
ϕ(2)

a , χb
k⊥

}
= εabcχc

k⊥.

Further analysis shows that other than the Gauss law constraints ϕ
(2)
a , there are no new secondary con-

straints in the model. Indeed, the Abelian constraints ψi do not create new ones,

{ψi, Ht} = −Aa
i ϕ(2)

a + π−
a χa

i + εabcA
a
i Ab

kχc
k≈0,

and consistency condition (8) for the constraints χa
i⊥ allows determining the corresponding four Lagrange

multipliers V⊥(τ). In summary, the light-cone SU(2) Yang–Mills mechanics has eight functionally indepen-
dent first-class constraints ϕ

(1)
a , ψk, and ϕ

(2)
a and four second-class constraints χa

k⊥.
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2.2. The structure group SU(3). Because the rank of the su(3) algebra is two, the null space of
the matrix Cab = fabcA

c
− is two-dimensional.2 As its basis, we choose the following null vectors, the first

linear and the second quadratic in the coordinates,

e(1)
a := Aa

−, e(2)
a := dabcA

b
−Ac

−, a, b, c = 1, 2, . . . , 8.

Using the vectors e
(1)
a and e

(2)
a , we decompose the set of 2 × (32 − 1) = 16 primary constraints χa

k as

χa
i = (χa

i⊥, ψi, ςi), i = 1, 2, (10)

where
ψi := e(1)

a χa
i , ςi := e(2)

a χa
i .

Decomposition (10) turns out to be very useful because of the special Poisson bracket relations for the
decomposition components,

{χa
k, ψi} = 0, {χa

k, ςi} = 0, {ψi, ςk} = 0, {ψi, ψj} = 0, {ςi, ςk} = 0.

Consistency conditions (8) allow finding the Lagrange multipliers V a
k⊥corresponding to decomposi-

tion (10) and lead to the equalities modulo the primary constraints

{ψi, Ht} = −Aa
i ϕ(2)

a + primary constraints, (11)

{ςi, Ht} = dabcA
a
i F b

−kF c
−k − 2dabcA

a
−Ab

iϕ
(2)
c + primary constraints. (12)

According to (11), the constraints ψi do not yield new secondary constraints. But analysis of (12) shows
that there are two new secondary constraints

ζi = dabcA
a
i F b

−kF c
−k. (13)

The constraints ζi commute, {ζi, ζj} = 0, and satisfy the relations

{ψi, ζj} = δijdabcA
a
−

(
F b
−kχc

k − 1
2
Ab

−ϕ(2)
c

)
,

{ςi, ζj} = −δijdabcdcpqA
a
−Ab

−F p
−kF q

−k.

(14)

Further analysis using the technique of Gröbner bases shows that the right-hand side of (14) is non-
vanishing modulo all known constraints and leads to the absence of tertiary constraints. The consistency
condition3

{ζi, Ht}
Σ2= {ζi, Hc} + {ζi, ςk}V ς

k = 0

allows deteriming the two unknown functions V ς
k in the decomposition of the Lagrange multipliers V a

k =
(V a

k⊥, V ψ
k , V ς

k ).
In summary, the complete set of constraints in the SU(3) Yang–Mills mechanics is

a. π+
a , ϕ

(2)
a , and ψk (18 first-class constraints) and

b. χa
k⊥, ςk, and ζk (16 second-class constraints).

These results are based on a tedious calculation of the Poisson bracket relations and their subsequent
decomposition with respect to the complete set of constraints. For this, we used the especially constructed
Gröbner basis briefly described in the appendix.

2The structure constants fabc and dabc used here correspond to the standard Gell-Mann basis for the su(3) algebra.
3The symbol Σ2 here denotes the constraint manifold defined by the primary and secondary constraints.
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3. Local symmetries

The presence of two new first-class constraints ψi poses the question of the existence of a new local
invariance in the model in addition to the expected residual gauge symmetry related to the initial group
of isotopic SU(n) rotations. To find this additional symmetry, we now pass to the problem of constructing
the generator of an infinitesimal local symmetry transformation. We restrict our consideration to the
case n = 2. The local symmetries are generated by first-class constraints (cf. [25]), but the presence of
the second-class constraints in the theory seriously complicates the task of constructing the symmetry
transformations in explicit form. To circumvent this difficulty, we proceed as follows. First, we effectively
eliminate the second-class constraints by introducing the Dirac bracket. This means that in what follows,
all expressions are evaluated modulo the second-class constraints.4 Then, according to the method in [26]
based on the abovementioned Dirac conjecture, we represent the generator G of local transformations as a
linear combination of all first-class constraints,

G =
3∑

a=1

ε(1)
a ϕ(1)

a +
2∑

i=1

ηiψi +
3∑

a=1

ε(2)
a ϕ(2)

a (15)

with the eight time-dependent functions ε
(1)
a (τ), ε

(2)
a (τ), and ηi(τ). Generator (15) is conserved on the

first-class constraint surface,
dG

dτ

Σ1= 0. (16)

Consequently, not all functions ε(1), ε(2), and ηi are independent. Indeed, evaluating the total derivative
in (16), we obtain the relation

ε̇(2)
a + ε(1)

a − εabcε
(2)
b Ac

+ − ηiA
a
i =0.

Expressing ε
(1)
a in terms of the remaining functions ε

(2)
a and ηi, we finally represent the generator of local

transformations in the form

G =
(
−ε̇(2)

a + εabcε
(2)
b Ac

+ + ηiA
a
i

)
ϕ(1)

a + ηiψi + ε(2)
a ϕ(2)

a . (17)

With (17), the infinitesimal local symmetry transformations of the phase space coordinates are given by
the Dirac brackets

δAµ = {G, Aµ}D, δπµ = {G, πµ}D.

We will discuss all symmetry transformations and their relation to an invariance of the initial Yang–
Mills theory in detail in a separate publication. Here, we only want to briefly describe the new local
symmetry in the light-cone Yang–Mills mechanics, which has no analogue in the instant form. Our re-
sult is that light-cone Lagrangian (4) is invariant, i.e., δGLlc = 0, under five-parameter local symmetry
transformations of two different sorts:

1. the local isotopic SU(2) rotations

δεA
a
+ = ε̇a(τ) − εabcεb(τ)Ac

+, δεA
a
− = −εabcεb(τ)Ac

−, δεA
a
i = −εabcεb(τ)Ac

i ;

2. the new local nonisotopic variations of the form

δηAa
+ = ηi(τ)Aa

i , δηAa
− = 0, δηAa

i = ηi(τ)Aa
−.

Having the generator of local transformations, we can now pose the question of finding a set of suitable
coordinates some of which represent the invariants of these transformations. Solving this problem means
explicitly reducing the Hamiltonian system onto the constraint manifold. In the next section, we discuss
some of the results obtained in this direction for the simple model with the structure group SU(2).

4This highly nontrivial operation can also be implemented using the Gröbner basis.
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4. Integrability of the light-cone mechanics

After elimination of the gauge degrees of freedom, the instant SU(2) Yang–Mills mechanics is a
(2×6)-dimensional nondegenerate Hamiltonian system. Its Hamiltonian corresponds to the so-called Euler–
Calogero–Moser many-particle system of type ID3 in a fourth-order external potential5

HI :=
1
2

3∑
a=1

p2
a +

1
2

∑
cyclic

ξ2
a

[
1

(xb − xc)2
+

1
(xb + xc)2

]
+

1
2

∑
a<b

x2
ax2

b ,

where (xa, pa) are the canonical coordinates of the three particles, {xa, pb} = δab, and the variables ξa

describe a spin system satisfying the so(3) algebra, {ξa, ξb} = εabcξc.
A test of the integrability of this system indicates a complex chaotic behavior of the classical trajectories

(see the discussion and references in [7]–[9]). Is the same true for the light-cone zero-mode dynamics? Here,
we briefly discuss the negative answer to this question, referring to [21], where it was shown that in contrast
to the instant form, the light-cone Yang–Mills mechanics reduces to the free motion of one nonrelativistic
particle.

Following [21], we briefly describe the stages of the Hamiltonian reduction. To write the reduced
form of the light-cone SU(2) Yang–Mills mechanics explicitly, we use a compact notation, introducing the
3×3 matrix Aab constructed from columns: A := ‖Aa

1 , A
a
2 , A

a
−‖. Eliminating the local degrees of freedom

associated with the three constraints ϕ
(2)
a is achieved using the polar representation of the matrix A:

A = OS, where S is a positive-definite symmetric 3×3 matrix and O is an orthogonal matrix. The three
angles parameterizing it are gauge degrees of freedom associated with the constraints ϕ

(2)
a . To find such

cyclic coordinates associated with the constraints ψ1 and ψ2, we represent the matrix S with respect to the
principal axes,

S = Rt(χ1, χ2, χ3) diag(q1, q2, q3)R(χ1, χ2, χ3),

using an orthogonal matrix R depending on the three Euler angles. An analysis shows that the two of them,
for example, the angles χ1 and χ2, can be identified with the remaining pure gauge degrees of freedom.

Further, solving for the four second-class constraints χa
i⊥ leads to a nondegenerate system representing

a one-dimensional free particle or, if we allow complex solutions of these constraints (see [21] for the details),
to a more interesting model, the so-called conformal mechanics. In the latter case with complex solutions
of the second-class constraints taken into account, the reduced Hamiltonian has the form

Hlc =
1
2

(
p2
1 +

κ2

q2
1

)
, (18)

where κ2 = (pχ3/2)2. Because the angle χ3 is cyclic, the conjugate momentum pχ3 is a constant of motion,
and Hamiltonian (18) indeed describes the conformal mechanics with the “coupling constant” κ2.6

5. Comments

We have considered the light-cone SU(n) Yang–Mills field theory supposing that the gauge potentials
in the classical action are functions of only the time. The dynamics of such zero modes differs significantly
from the instant-time Yang–Mills mechanics. The light-cone mechanics has a more complicated description
as a constrained system. Using the Dirac formalism for degenerate Hamiltonian systems, we found that
in addition to the constraints generating the expected homogeneous SU(n) gauge group transformations,

5See [11], [14] for the details of the Hamiltonian reduction.
6The quantity κ is the parameter measuring the deviation from the real trajectories. They are all in the subspace with

det‖A‖ = 0 and correspond to a free particle motion.
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there is a new set of first- and second-class constraints. Moreover, it turned out that both the number
and the type of constraints depends on the rank of the structure group. Thus, for example, there is an
additional pair of second-class constraints for SU(3) in comparison with the SU(2) case. In comparison,
we note that in the instant form, there are only primary constraints ϕ

(1)
a and secondary constraints ϕ

(2)
a of

the first class for all groups SU(n). Because of the presence of the new constraints, the light-cone SU(2)
mechanics has an essential decrease in the number of “true” degrees of freedom, which finally results in the
classical integrability of the model. Whether the last statement holds for the light-cone SU(n) Yang–Mills
mechanics with n > 2 is an open question.

Appendix: Description of the Gröbner basis for the light-cone
SU(3) Yang–Mills mechanics

The standard Dirac–Bergmann procedure for determining and classifying constraints was implemented
computationally via the Gröbner bases method [16]–[18] first in Maple [19], [23] for the light-cone me-
chanics with the structure group SU(2) using the built-in function GroebnerBasis with the monomial
order DegreeReverseLexicographic. But for the group SU(3), because of the substantial increase in the
number of nonzero structure constants fabc and dabc, the computer memory turned out to be insufficient.
Therefore, a special program was written in the computer algebra system Mathematica for constructing a
homogeneous Gröbner basis (Sec. 10.2 in [16]) step by step in accordance with chosen grading variables.

We introduce the grading Γ, giving the following weights of the variables πµ
a and Aa

µ:

Γ(πµ
a ) = 2, Γ(Aa

µ) = 1, a = 1, 2, . . . , 8, µ = −, 1, 2.

The constraints χa
k, ϕ

(2)
a , and ζi (see the respective (6), (9), and (13)), now representing the set of Γ-

homogeneous polynomials, are given in Table 1 with the corresponding Γ-degree indicated.

Table 1

Γ-degree Constraints(i, k = 1, 2)

2 χa
k = πk

a − fabcA
b
−Ac

k

3 ϕ
(2)
a = fabc(Ab

−π−
c + Ab

kπk
c )

5 ζi = dabcfbpqfcstAa
i Ap

−Aq
kAs

−At
k

Further, we choose a Γ-compatible graded lexicographic order, ensuring a minimal initial number of
S-polynomials, in the form

π−
a � π1

b � π2
c � Aa

− � Ab
1 � Ac

2, a, b, c = 1, 2, . . . , 8,

and
πµ

a � πµ
b � Aa

µ � Ab
µ, if a < b

in the case of an identical spatial index µ. With this ordering, the constraints χa
k and ϕ(2) form the lowest

homogeneous Gröbner basis components G2 and G3 of the respective degrees two and three. Higher-degree
components are constructed step by step in the order of increasing degree according to the algorithm:

a. compute the S-polynomials for the elements of Gi and Gj : (Gi, Gj);

b. eliminate superfluous S-polynomials according to the Buchberger criteria [16]–[18];

c. compute the normal forms of the remaining S-polynomials modulo the lower-degree elements previ-
ously found.
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The computational results are shown in Table 2, where we indicate the number of S-polynomials with
a nonzero normal form in the component Gn and the pairs of components from which the elements are
taken for forming those S-polynomials.

Table 2

Gn Polynomials Constraints and S-polynomials

G2 16 χa
k

G3 8 ϕ
(2)
a

G4 15 (G3, G3)

G5 14 ζi, (ζi, Gj), i = 1, 2, j = 2, 3, 4

(G2, G4), (G3, G3), (G3, G4), (G4, G4)

G6 13 (G2, G5), (G3, G5), (G4, G5), (G5, G5)

(G3, G4), (G4, G4)

The program was written in the language of the computer algebra system Mathematica (version 5.0),
and computations were performed on a machine with the processor 2xOpteron-242 (1.6 GHz) with 6 Gbytes
of RAM. We note that the presented elements are only those lowest components of the Gröbner basis needed
for this work. Further computations were not done because of the rapid increase in the required time when
moving from degree to degree: it is approximately an hour for G4, 1.5 days for G5, and already a month
for G6.
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