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INTRODUCTION

Completion of a system of polynomial and differen-
tial equations to involution [1, 2] is a necessary and
extremely complicated stage in studying dynamical
systems with nontrivial geometry of the configuration,
or phase, space. Well-known examples of this kind are
so-called degenerate Hamiltonian mechanical models
[3–6]. When solving evolutionary problems for these
models, it is required to find all conditions ensuring that
the dynamics is developing in a symplectic subspace
determined by the constraints and, then, carry out cal-
culations modulo the ideal generated by them. This
problem admits an algorithmization procedure. In par-
ticular, an algorithm for determining and classifying all
constraints in degenerate polynomial Hamiltonian sys-
tems has been developed [7–11]. It is based on exten-
sive use of a universal computer algebra method—the
Gröbner bases technique [12, 13].

In many important problems of theoretical and
mathematical physics, independent dynamical vari-
ables are high-dimensional objects of tensor nature. In
view of this, implementations of the algorithm based on
the usage of a Gröbner bases in standard computer alge-
bra systems, such as 

 

Maple

 

 and 

 

Mathematica

 

, require
much memory and computation time and, therefore,
lead to a desired result only in simplest models.

The goal of this paper is to discuss the fact that, in
the problems where basic objects are multilinear
objects (tensors), the so-called homogeneous Gröbner

basis [12] is a more adequate construction. Note that
this situation takes place in the majority of problems in
theoretical physics. Such a basis can be used after intro-
duction of a special grading 

 

Γ

 

 specified by an appropri-
ate choice of weights of the variables. It is important to
note that the homogeneous Gröbner basis is con-
structed step by step, as the degree of the polynomials
grows. It is this fact that results in memory reduction.
Besides, by virtue of the homogeneity property, it is
often possible to use only a part of the constructed
basis, confining ourselves to the degrees required by a
particular problem (whereas the complete basis may be
incomparably greater). To demonstrate effectiveness of
the suggested construction, we build the homogeneous
basis for a Hamiltonian mechanical system with
64 degrees of freedom, the so-called 

 

SU

 

(3) light-cone
mechanics. Note that the complete set of involutive
constraints for this model was not known before we
computed it.

The paper consists of three sections. In the first sec-
tion, the notion of 

 

Γ

 

-grading for polynomials is defined,
and specific features of construction of the 

 

Γ

 

-homoge-
neous Gröbner basis and its use are discussed. Brief
description of the model under study and statement of
the problem solved by the algorithm based on the Gröb-
ner basis are presented in the second section. In the
third section, construction of the homogeneous basis is
described in detail. In the Conclusions, basic results of
the work are summarized.
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Maple
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Mathematica
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1. SPECIFIC FEATURES OF 

 

Γ

 

-HOMOGENEOUS 
GRÖBNER BASIS

In this section, we briefly remind the concept of

 

Γ

 

-grading for polynomials [12], specific features of
construction of the 

 

Γ

 

-homogeneous Gröbner basis, and
its use. As an example, we use the ring of polynomials

 

K

 

[

 

p

 

, 

 

q

 

] in two variables 

 

p

 

 and 

 

q

 

 over a field 

 

K

 

.

 

Γ

 

-grading is a mapping of a set of monomials 

 

T

 

(

 

p

 

, 

 

q

 

)
into the set of positive integers 

 

�

 

. For example, for a
monomial 

 

p

 

s

 

q

 

t

 

, the 

 

Γ

 

-degree is given by the rule

where 

 

α

 

p

 

 and 

 

α

 

q

 

 denote weights of variables 

 

p

 

 and 

 

q

 

,
respectively. If, for some 

 

α

 

p

 

 and 

 

α

 

q

 

, all monomials of a
given polynomial have the same 

 

Γ

 

-degree, the polyno-
mial is said to be 

 

Γ

 

-homogeneous. To find weights of
the variables such that each polynomial from a given set
is 

 

Γ

 

-homogeneous for some 

 

Γ

 

-degree, we need to solve
a system of linear equations [12]. Let weights of vari-
ables 

 

p

 

 and 

 

q

 

 be 

 

α

 

p

 

 = 2 and 

 

α

 

q

 

 = 1.

Further, a 

 

Γ

 

-compatible ordering 

 

s

 

 on the set of
monomials 

 

T

 

(

 

p

 

, 

 

q

 

) is introduced as, for example,

or

Now, 

 

Γ

 

-homogeneous polynomials can be com-
pared with respect to their 

 

Γ

 

-degrees. For example,

A typical problem for the models mentioned in the
Introduction is as follows. Let a subspace 

 

M

 

 

 

⊂

 

 

 

�

 

2

 

n

 

 be
given by a set 

 

F

 

 of 

 

Γ

 

-homogeneous polynomials in the
ring 

 

K

 

[

 

q

 

i

 

, 

 

p

 

j

 

] (

 

i

 

, 

 

j

 

 = 1, …, 

 

n

 

):

It is required to find a decomposition of some polyno-
mial 

 

f

 

(

 

q

 

i

 

, 

 

p

 

j

 

) modulo 

 

M

 

. Solution of this problem in the
framework of an algorithmic approach with the use of
Gröbner bases is based on the following assertion [12].

 

Given a finite set F of polynomials each of which is
homogeneous with respect to a given grading 

 

Γ

 

, one
can calculate the 

 

Γ

 

-homogeneous Gröbner basis of
degree d of the ideal

 

 Id(

 

F

 

) 

 

by means of the Buchberger
algorithm by dropping all S-polynomials of degrees
greater than d. The result is sufficient for checking
whether an arbitrary polynomial f of degree

 

 

 

Γ

 

(

 

f

 

) 

 

≤

 

 

 

d
belongs to the ideal

 

 Id(

 

F

 

).
In what follows, we show that, in the problems

where polynomial equations determining subspace 

 

M

 

admit introduction of the corresponding homogeneity,
it is the use of the 

 

Γ

 

-homogeneous Gröbner basis that is
most efficient from the computational standpoint.

Γ psqt( ) αps αqt, αp αq,+ �,∈=

a( ) deglex p s q p s q2,⇒

b( ) deglex q s p q2
 s p.⇒

p2 q4
 s pq q3

 s p q2.+ + +

ϕα qi p j,( ) 0, α 1 … k., ,= =

2. EXAMPLE: LIGHT-CONE GAUGE 
MECHANICS

The light-cone Yang–Mills mechanics [7–9] is the
Yang–Mills field theory under the assumption that the
fields along light front are homogeneous. This model is
a finite-dimensional Hamiltonian system with polyno-
mial constraints the ideal of which turns out to have a
quite nontrivial Gröbner basis. Dynamical variables in
the model are differential 1-forms with values in the
algebra of group SU(n),

where dxµ = (dx+, dx–, dx⊥) are differentials of the coor-
dinates taken here in the form of standard “light-cone”
variables of the four-dimensional Minkowski space

(see [14] for detail). The components  have both
four-dimensional Lorentz space–time index µ and the
isotopic group index a; i.e., they are vectors in the cor-
responding spaces. The n × n matrices Ta form a basis
of algebra su(n) and satisfy the commutation relations

with structural constants fabc.

By virtue of the homogeneity assumption, the fields

(x+) depend only on the variable x+, which is an evo-
lutionary parameter on the light cone. It is this depen-
dence of the components of the 1-form that underlines
the Yang–Mills mechanics on the light front (see [15]
for detail).

The Lagrangian L of the model is given by

(1)

where dV is the 4-form of space–time volume and the
right-hand side is the trace of the external product of the
field strength tensor, namely, the curvature 2-form F :=
dA + A ∧ A and the form ∗F that is dual to F with respect
to the Minkowski space metrics.

The gauge invariance of the Yang–Mills field theory
and specific features of the light cone theory formula-
tion give rise to degeneracy of the system of evolution-
ary equations (see [5, 14]). Namely, it turns out that not
all equations of motion contain second-order deriva-
tives with respect to the “time” x+.

When turning to the Hamiltonian formalism by
means of the Legendre transform

A := Aµ
a Tadxµ, µ + – 1 2,, , ,=

a 1 … n2 1,–, ,=

Aµ
a

Ta Tb,[ ] 2ifabcTc=

Aµ
a

LdV  := trF ∗F,∧

πa
+ := 

∂L

∂ Ȧ+
a

--------- 0,=

πa
– := 

∂L

∂ Ȧ–
a

--------- Ȧ–
a

fabcA+
b A–

c ,+=
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the above-mentioned theory degeneracy reveals itself in
the presence of the so-called primary constraints

The system dynamics is given by the total Hamiltonian

(2)

which is the sum of the canonical Hamiltonian

and the primary constraints multiplied by arbitrary

Lagrange multipliers ua, , which depend only on the
“time” x+. In order that the system trajectory remain all
time on the surface determined by the primary con-
straints Σ, it is required to meet all consequences of the
conditions

where we introduced the Poisson brackets, which take
the following form for canonically conjugate variables:

This situation is quite typical in the theory of degener-
ate dynamical systems, when it is required to carry out
calculations modulo surface of all constraints Σ arising
in the systems. In the case of polynomial constraints,
this can be done with the help of the Gröbner bases
technique.

3. HOMOGENEOUS GRÖBNER BASIS
IN THE CASE OF THE SU(3) GROUP

In this section, we apply the grading incorporation
procedure to the system described in the previous sec-
tion for the case of the SU(3) group. Then, we present
an algorithm for construction of the homogeneous
Gröbner basis and its basic parameters.

The su(3) algebra is an algebra of rank 2, and its
properties are given by two independent sets of coeffi-
cients: antisymmetric fabc and symmetric dabc structure
constants. The set of these constants used in the subse-
quent calculations is presented in the Appendix; it cor-
responds to the case where the basis of the su(3) algebra
is given by well-known Gell–Mann λ-matrices.

πa
k  := 

∂L

∂ Ȧk
a

--------- fabcA–
bAk

c,=

Σ: ϕa
1( ) := πa

+ 0,=

χk
a := πk

a fabcA–
bAk

c+ 0.=

HT  := HC uaϕa
1( )

v k
aχk

a,+ +

HC
1
2
---πa

–πa
– fabcA+

b A–
cπa

– Ak
cπa

k+( )–
1
2
---V A( ),+=

V A( ) := 
1
2
---fabcAi

bA j
cfadeAi

d A j
e, i j, 1 2,,=

uk
a

ϕ̇α
1( ) ϕα

1( ) HT,{ } 0,= =

χ̇k
a χk

a HT,{ } 0,= =
Σ

Σ

A±
a πb

±,{ } δb
a, Ak

a πb
l,{ } δk

l δb
a.= =

Construction. Let us introduce a Γ-grading by spec-

ifying the following weights of variables  and :

(3)

The constraints (see [15]) that now represent the set of
Γ-homogeneous polynomials are given in Table 1 with
the indication of the corresponding Γ-degree.

Let us select a Γ-compatible graded lexicographical
ordering that ensures the minimal initial number of
S-polynomials:

(4)

or, in the case of identical spatial index µ,

(5)

Under such ordering, the constraints  and ϕ(2) form
the lowest components G2 and G3 of the homogeneous
Gröbner basis of degrees 2 and 3, respectively. The
components of higher degrees are constructed succes-
sively in the increasing order of their degrees in accor-
dance with the algorithm as follows:

(i) calculate S-polynomials for elements from Gi and
Gj as (Gi , Gj);

πa
µ Aµ

a

Γ πa
µ( ) 2, Γ Aµ

a( ) 1,= =

a 1 2 … 8, µ, , , – 1 2., ,= =

πa
–
 s πb

1
 s πc

2
 s A–

a
 s A1

b
 s A2

c ,

a b c, , 1 2 … 8,, , ,=

πa
µ

 s πb
µ

 s Aµ
a

 s Aµ
b , if a b.<

χk
a

Table 1.  Original set of constraints

Γ-degree Constraints (i, k = 1, 2)

2

3

5

χk
a πa

k fabcA–
bAk

c–=

ϕa
2( ) fabc A–

bπc
– Ak

bπc
k+( )=

ζi dabcfbpqfcst Ai
aA–

pAk
qA–

s Ak
t=

Table 2.  The homogeneous Gröbner basis up to the 6th Γ-deg-
ree

Gn
Number

of elements Constraints and S-polynomials

G2 16

G3 8

G4 15 (G3, G3)

G5 14 ζi, (ζi, Gj), i = 1, 2, j = 2, 3, 4
(G2, G4), (G3, G3), (G3, G4), (G4, G4)

G6 13 (G2, G5), (G3, G5), (G4, G5), (G5, G5),
(G3, G4), (G4, G4)

χk
a

ϕa
2( )
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(ii) eliminate redundant S-polynomials using the
Buchberger criteria;

(iii) calculate normal forms for the remaining
S-polynomials with respect to the already found lowest
components.

Results of calculation of the homogeneous Gröbner
basis up to the 6th Γ-degree inclusively are shown in
Table 2. The table also shows the number of S-polyno-
mials with a nonzero normal form in the component Gn
and pairs of the components from which elements used
for forming these S-polynomials were taken.

The program was written in the language of the
computer algebra system Mathematica (version 5.0),
and calculations were carried out on a computer with
2xOpteron-242 (1.6 GHz) processor. The computation
time grew greatly with the increase of the degree. For
example, the calculation of G4, G5, and G6 took one
hour, one and a half days, and one month, respectively.
For the S-polynomials of the same Γ-degree, the reduc-
tion time was also considerably different. As a rule, the
nonzero S-polynomials turned out in the normal form at
once. Most of the time was spent on nonzero reduc-
tions, which agrees with the well-known results for
polynomials systems in many variables. The specific
feature of our calculations was that up to 80% of time
was spent on the reduction of the polynomials the ten-
sor structure of which was clearly broken.

The amount of memory used (about 40 Kb) almost
did not change in the course of the calculation. It should
be noted that concrete characteristics may depend on a
particular algorithm implementation.

A p p l i c a t i o n. The basis was used in the frame-
work of the Dirac–Bergman–Gröbner algorithm [7–11]
for finding a complete set of constraints and classifying
them by their class for the SU(3)-light-cone Yang–Mills
mechanics. We present an example of a concrete calcu-
lation, which demonstrates efficiency of using the
basis. It is required to calculate the Poisson bracket
modulo the constraints given in Table 1 for the convo-
lution

(6)ψi A–
aχi

a A–
aπa

i= =

with the complete Hamiltonian HT (2). Using the Gröb-
ner bases technique, we find out that the result of calcu-
lation of

is zero on the constraints Σ surface

Calculations of this kind “by hand” are extremely com-
plicated, since they require knowledge of nontrivial
identities involving many variables and structural con-
stants. It is especially difficult to prove without using
computer methods that the result does not reduce to
zero. Note also that, in order to obtain the decomposi-
tion in an explicit form, it is required to know represen-
tation of each element of the Gröbner basis in terms of
the original set of constraints.

E f f e c t  o f  l e x i c o g r a p h i c a l  o r d e r i n g.
Instead of the lexicographical ordering (4), (5), we may
set

(7)

(8)

Table 3 shows that, under such ordering, the number of
S-polynomials greatly increases even in the case of an
incomplete set of constraints.

It is interesting that G3 contains ψi(6), which are
important in the Dirac–Bergman–Gröbner algorithm
being generators of additional gauge transformations
(see [15]). They are lacking when the dynamics is
described in the instant form and have been found with
the help of an absolutely independent procedure. Such
a feature of the Gröbner bases is a new aspect of using
standard bases technique in studying dynamical sys-
tems. On the other hand, tensor structure is not taken
into account in the Buchberger algorithm; therefore, an
additional modification of the calculation technique is
required to improve its computational efficiency.

C o m p a r i s o n  w i t h  t h e  c a s e  o f  t h e
SU(2) g r o u p. The group SU(n) has n2 – 1 independent
generators; hence, the number of components of matrix
A grows considerably when turning to groups of large
order. For example, in the case of SU(2), we deal with
12 variables, whereas the number of variables in the
case of SU(3) is as many as 32. Besides, it turned out
that a more serious difficulty from the computational
standpoint is associated with the fact that, for the
groups SU(n) with n ≥ 3, there exist additional con-
stants dabc, which results in the appearance of additional
invariant structures, the presence of which makes anal-
ysis of the membership in the ideal an extremely cum-
bersome procedure. As a consequence of this, in the
case of a model with the structural group SU(3), the
main memory of size 6 Gb turned out insufficient for

ψi HT,{ } πa
–πa

i fabcfcpqA–
aA j

bA j
p Ai

q+=

ψi HT,{ } Ai
aϕa

2( )– πa
–χi

a fabcAi
aAk

bχk
c+ + 0.= =Σ

A1
b
 s A2

c
 s A–

a
 s πb

1
 s πc

2
 s πa

–,

a b c, , 1 2 … 8,, , ,=

Aµ
a

 s Aµ
b

 s πa
µ

 s πb
µ, if a b.<

Table 3.  The homogeneous Gröbner basis for the con-

straints 

Gn
Number

of elements Constraints and S-polynomials

G2 16

G3 72 (G2, G2)

G4 76 (G2, G3), (G3, G3)

G5 376 (G2, G4), (G3, G3), (G3, G4), (G4, G4)

χk
a

χk
a
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the calculation of a Gröbner basis by means of standard
built-in functions in the Maple 10 and Mathematica 5.0
systems. At the same time, in the case of SU(2), the cal-
culation of the basis by means of the GroebnerBasis
function in the Mathematica 5.0 system with the use of
the inverse lexicographical monomial order

takes 60 s; the basis contains 64 elements and turns out
automatically Γ-homogeneous according to grading
(3).

4. CONCLUSIONS

Specific features of homogeneous Gröbner bases
make it possible to build them by the degrees in accor-
dance with the selected grading Γ. This considerably
reduces the computation time and required memory if
the maximum degree of the polynomials the member-
ship of which in the homogeneous ideal needs to be
checked is a priori known. The efficiency of using such
special bases in studies of dynamical systems when
completing them to involution has been demonstrated
on the example of the SU(3)-light-cone Yang–Mills
mechanics. The tensor formulation of models of this
kind gives rise to a great number of variables and, as a
result, to the impossibility of using standard packages
for calculation of the bases. On the other hand, it is such
a formulation that makes it possible to take advantage
of the homogeneous Gröbner bases.

It should be noted that the main portion of the com-
putation time was spent on zero reductions, especially
for the S-polynomials with obviously disturbed tensor
structure. Since the tensor structure cannot directly be
taken into account in the Buchberger algorithm, the
group aspects of the construction of the homogeneous
Gröbner bases are of interest. This is important for the
efficient use of Gröbner bases in the theory of degener-
ate Hamiltonian systems with symmetries.

APPENDIX

The eight traceless 3 × 3 Hermitian Gell–Mann
matrices

π1
1 π1

2 π2
1 π2

2 π3
1 π3

2 π1
– π2

– π3
–,, , , , , , , ,{

A1
1 A2

1 A1
2 A2

2 A1
3 A2

3 A–
1 A–

2 A–
3 }, , , , , , , ,

λ1

0 1 0

1 0 0

0 0 0⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

, λ2

0 i– 0

i 0 0

0 0 0⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,= =

(9)

serve as a basis of the su(3)-algebra and satisfy the
commutation relations

(10)

with the structure constants fabc that are antisymmetric
with respect to all indices. The nonzero values are as
follows:

The product of any two λ-matrices can be represented as

with the following nonzero symmetric structure con-
stants dabc:
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λ3

1 0 0

0 1– 0

0 0 0⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

, λ4

0 0 1

0 0 0

1 0 0⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,= =

λ5

0 0 i–

0 0 0

i 0 0⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

, λ6

0 0 0

0 0 1

0 1 0⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,= =

λ7

0 0 0

0 0 i–

0 i 0⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

, λ8
1

3
-------

1 0 0

0 1 0

0 0 2–⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

= =

λa λb,[ ] 2i fabcλc

c 1=

8

∑=

f123 1,=

f147 f246 f257 f345 f516 f637 1/2,= = = = = =

f458 f678 3/2.= =

λaλb
2
3
---δabI dabc ifabc+( )λc

c 1=

8

∑+=

d118 d228 d338
1

3
-------,= = =

d146 d157 d256 d344 d355
1
2
---,= = = = =

d247 d366 d377
1
2
---,–= = =

d448 d558 d668 d778
1

2 3
----------,–= = = =

d888
1

3
-------.–=
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