14th Computer Algebra Seminar

on Computer Algebra Systems in Teaching and Research

LIT / Joint Institute for Nuclear Research Dubna / Russia , June 2 - 3, 2011

Solution for certain classes of PDEs

with the Method of Inverse Differential Operators

Prof. Dr. Robert Kragler Weingarten University of Applied Sciences kragler@hs-weingarten.de http://portal.hs-weingarten.de/web/kragler/mathematica

Abstract.

The Method of Inverse Differential Operators (well established for ODEs) is extended in order to be applied to non-linear PDEs. Implemented in Mathematica a wide class of non-homogeneous PDEs can be solved. One restriction is that the PDEs must be linear and the coefficients of the operator differential polynomial $\chi(\mathcal{D}_{x_1}, \mathcal{D}_{x_2}, ...)$ have to be constant.

In order to obtain the homogeneous solution u_h it is essential that χ can be decomposed into linear factors $(\alpha_1 \mathcal{D}_{x_1} + \alpha_2 \mathcal{D}_{x_2} + ... + \alpha_n \mathcal{D}_{x_n} + \gamma)^{\kappa}$ (of multiplicity κ) for a subset of n independent variables $\{x_1, x_2, ..., x_n\} \in \{t, x, y, z, \xi, \eta, \zeta\}$. To determine the particular solution u_p for non-homogeneous PDEs there exist some restrictions as regards to the non-homogenuity $\phi(x_1, x_2, ...)$. To obtain the solution u_p it is essential that a series of replacement rules for the differential operators \mathcal{D}_{x_i} can be applied t the non-homogenuity $\phi(x_1, x_2, ...)$ which causes some restrictions on the functional form of ϕ . Thus, the non-homogenuity must be either

an arbitrary monomial $\phi_1 = M(x, y, z, ...) = \sum_{i=1}^k \alpha_i x^{k_i} y^{m_i} z^{n_i} \cdot ...$ or an exponential, trigonometric (sin|cos) and hyperbolic (sinh|cosh)

function ϕ_2 with linear arguments. Moreover, any multiplicative combination of an exponential ϕ_1 with trigonometric|hyperbolic functions ϕ_2 or the sum of all these functions including monomials is admitted.

Finally, the special case of 2nd order PDEs subject to initial conditions $u(x_1,0) = \phi(x_1)$ and $u_{x_2}(x_1,0) = \psi'(x_1)$ is treated. The only restriction is that the differential operator polynomial $\chi(\mathcal{D}_{x_1}^2, \mathcal{D}_{x_2}^2, ...)$ must be factorizable into two linear factors in order to determine u_h . The type of PDEs to be considered are the wave equation and the Laplace equation.

Only in a few cases Mathematica's built-in routine DSolve is able to find a solution.