14th Computer Algebra Seminar

on Computer Algebra Systems in Teaching and Research

LIT / Joint Institute for Nuclear Research Dubna / Russia, June 2-3, 2011

Solution for certain classes of PDEs with the Method of Inverse Differential Operators

Prof. Dr. Robert Kragler
Weingarten University of Applied Sciences kragler@hs-weingarten.de
http://portal.hs-weingarten.de/web/kragler/mathematica

Abstract

.

The Method of Inverse Differential Operators (well established for ODEs) is extended in order to be applied to non-linear PDEs. Implemented in Mathematica a wide class of non-homogeneous PDEs can be solved. One restriction is that the PDEs must be linear and the coefficients of the operator differential polynomial $\chi\left(\mathcal{D}_{x_{1}}, \mathcal{D}_{x_{2}}, \ldots\right)$ have to be constant.
In order to obtain the homogeneous solution u_{h} it is essential that χ can be decomposed into linear factors $\left(\alpha_{1} \mathcal{D}_{x_{1}}+\alpha_{2} \mathcal{D}_{x_{2}}+\ldots+\alpha_{n} \mathcal{D}_{x_{n}}+\gamma\right)^{\kappa}$ (of multiplicity κ) for a subset of n independent variables $\left\{x_{1}, x_{2}, \ldots x_{n}\right\} \in\{t, x, y, z, \xi, \eta, \zeta\}$. To determine the particular solution u_{p} for non-homogeneous PDEs there exist some restrictions as regards to the non-homogenuity $\phi\left(x_{1}, x_{2}, \ldots\right)$. To obtain the solution u_{p} it is essential that a series of replacement rules for the differential operators $\mathcal{D}_{x_{i}}$ can be applied t the non-homogenuity $\phi\left(x_{1}, x_{2}, \ldots\right)$ which causes some restrictions on the functional form of ϕ. Thus, the non-homogenuity must be eithe an arbitrary monomial $\boldsymbol{\phi}_{1}=M(x, y, z, \ldots)=\sum_{i=1}^{k} \alpha_{i} x^{k_{i}} y^{m_{i}} z^{n_{i}} \cdot \ldots$ or an exponential, trigonometric (sin $\left.\mid \cos \right)$ and hyperbolic (sinh $\left.\mid \cosh \right)$ function $\boldsymbol{\phi}_{2}$ with linear arguments. Moreover, any multiplicative combination of an exponential $\boldsymbol{\phi}_{1}$ with trigonometric|hyperbolic functions ϕ_{2} or the sum of all these functions including monomials is admitted.
Finally, the special case of 2nd order PDEs subject to initial conditions $u\left(x_{1}, 0\right)=\phi\left(x_{1}\right)$ and $u_{x_{2}}\left(x_{1}, 0\right)=\psi^{\prime}\left(x_{1}\right)$ is treated. The only restriction is that the differential operator polynomial $\chi\left(\mathcal{D}_{x_{1}}{ }^{2}, \mathcal{D}_{x_{2}}{ }^{2}, \ldots\right)$ must be factorizable into two linear factors in order to determine u_{h}. The type of PDEs to be considered are the wave equation and the Laplace equation.
Only in a few cases Mathematica's built-in routine DSolve is able to find a solution.

